
A Byzantine Fault-Tolerant Consensus Library for Hyperledger
Fabric

Artem Barger

IBM Research, Haifa Lab

Haifa, Israel

bartem@il.ibm.com

Yacov Manevich

IBM Research, Haifa Lab

Haifa, Israel

yacovm@il.ibm.com

Hagar Meir

IBM Research, Haifa Lab

Haifa, Israel

hagar.meir@ibm.com

Yoav Tock

IBM Research, Haifa Lab

Haifa, Israel

tock@il.ibm.com

ABSTRACT

Hyperledger Fabric is an enterprise grade permissioned distributed

ledger platform that offers modularity for a broad set of industry

use cases. One modular component is a pluggable ordering service

that establishes consensus on the order of transactions and batches

them into blocks. However, as of the time of this writing, there is no

production grade Byzantine Fault-Tolerant (BFT) ordering service

for Fabric, with the latest version (v2.1) supporting only Crash Fault-

Tolerance (CFT). In our work, we address crucial aspects of BFT

integration into Fabric that were left unsolved in all prior works,

making them unfit for production use.

In this work we describe the design and implementation of a BFT

ordering service for Fabric, employing a new BFT consensus library.

The new library, based on the BFT-Smart protocol and written in Go,

is tailored to the blockchain use-case, yet is general enough to cater

to a wide variety of other uses. We evaluate the new BFT ordering

service by comparing it with the currently supported Raft-based

CFT ordering service in Hyperledger Fabric.

KEYWORDS

Blockchain, Distributed Ledger

ACM Reference Format:

Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock. 2020. A Byzan-

tine Fault-Tolerant Consensus Library for Hyperledger Fabric. In Proceedings
of . ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 INTRODUCTION

Blockchain technology became popular with the advent of Bitcoin,

a cryptocurrency platform that employs “nakamoto consensus” –

an algorithm based on Proof of Work (PoW) – to order transactions.

Subsequent blockchain platforms like Ethereum popularized the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

, ,
© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

notion of the “smart contract” as a means for executing sophis-

ticated transactions. These pioneering platforms contain a great

technological potential for transforming the way we do business.

However, for enterprise applications they contain two major flaws

that sparked additional innovation.

Consensus mechanisms based on Proof of Work suffer from

low transaction rates, long settlement times, and are widely criti-

cised for their exorbitant power consumption. As a consequence,

blockchain platforms started using Byzantine Fault Tolerant (BFT)

consensus mechanisms (e.g. PBFT [21]) as a replacement for PoW

(see Tendermint [17]). Large-scale blockchain applications present

tough requirements in terms of scalability, fairness, and robustness,

which yielded a wave of innovation in BFT research (e.g. HoneyBad-

gerBFT [48]), and systems that extend the traditional BFT model

(e.g. Stellar [46]). For a review see "Blockchain Consensus Protocols

in the Wild" [20].

Bitcoin and Ethereum are pseudo-anonymous open membership

platforms. This conflicts with the stringent regulations on finan-

cial systems (e.g. KYC & AML), and the privacy needs of business

networks. Enterprise oriented blockchain platforms address these

concerns by creating "permissioned" networks, where participants
are identified by their real-world identity and organizational affilia-

tions. Privacy concerns are handled by providing privacy preserving
collaboration patterns such as: (1) the dissemination of informa-

tion on a need to know basis (e.g. Corda [15]), (2) the definition of

segregated communication channels (e.g. Hyperledger Fabric [9]),

(3) the use of advanced cryptography (e.g. ZK [53, 60]), as well as

other techniques, and combinations of those.

Hyperledger Fabric (or just Fabric) is an open source project

dedicated to the development of an enterprise grade permissioned

blockchain platforms [9]. Fabric employs the execute-order-validate
paradigm for distributed execution of smart contracts. In Fabric,

transactions are first tentatively executed, or endorsed, by a subset

of peers. Transactions with tentative results are then grouped into

blocks and ordered. Finally, a validation phase makes sure that

transactions were properly endorsed and are not in conflict with

other transactions. All transactions are stored in the ledger, but

valid transactions are then committed to the state database, whereas

invalid transactions are omitted from the state.

In the heart of Fabric is the ordering service, which receives

endorsed transaction proposals from the clients, and emits a stream

of blocks. At the time of writing, the latest Fabric release (v2.0)

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, , Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock

uses the Raft [5, 49] protocol which is Crash Fault Tolerant (CFT).

Despite previous efforts to do so, Fabric still does not have a BFT

ordering service. In this paper we describe our efforts to remedy

this predicament.

The latest attempt to provide Fabric with a BFT ordering service

was by Sousa et al. in 2018 [58], which adapted the Kafka-based

ordering service of Fabric v1.1 and replaced Kafka with a cluster of

BFT-Smart servers. That attemptwas not adopted by the community

[4] because of various reasons (elaborated in Section 7). The four

top reasons were: (1) it was a two process two language solution,

and (2) it did not address some of the more difficult, configuration

related work flows of Fabric. Moreover, since it was built on the

Kafka architecture and used an external monolith BFT cluster, (3)

followers were not able to validate the transactions proposed by

the leader during the consensus phase, and (4) it missed out an

opportunity to perform several much needed optimizations that

exploit the unique blockchain use-case.

In the time that passed since then, Fabric incorporated the Raft

protocol as the core of the ordering service, significantly changing

the Ordering Service Node (OSN) in the process. Our goal was to

implement a BFT library in the Go programming language, that

would be fit to use as an upgrade for Raft. Our prime candidates

were BFTSmart and PBFT. We soon realized that simply re-writing

the Java (or C) implementation in Go will not make the cut. The

blockchain use case offers many opportunities for optimizations

that are absent from a general-purpose transaction-ordering ref-

erence scenario. In addition, Fabric itself presents some unique

requirements that are not addressed by traditional protocol imple-

mentations. We therefore set out to design and implement a BFT

library that on the one hand addresses the special needs and oppor-

tunities of a blockchain platform, but on the other hand is general

and customizable enough to be useful for other use cases.

One of our goals was to provide an end-to-end Fabric system that

addresses all the concerns that a BFT system must face. This forced

us to tackle issues that span the entire Fabric transaction flow –

from the client, the ordering service, and the peers, to the structure

and validation of blocks. The result is the first fully functional

BFT-enabled Fabric platform. Our key contributions are:

Consensus library A stand-alone Byzantine fault-tolerant con-

sensus library, based on BFT-Smart. The code is open sourced [44]

and is written in the Go programming language.

Interface An easy to integrate interface of a consensus library,

suited for blockchains. This interface captures the special

needs of a blockchain application, but is fully customizable

for other use cases as well.

Byzantine fault-tolerant Hyperledger Fabric A full integra-

tion of the library with Hyperledger Fabric [9]. This code is

also publicly available and open sourced [43].

Evaluation An evaluation of our BFT version of Fabric versus

Fabric based on Raft. The evaluation demonstrates that our

implementation is comparable in performance to the earlier

BFT-Smart based implementation [58], but slower than Raft,

mainly due to the lack of pipelining.

The rest of the paper is organized as follows. Section 2 intro-

duces some background on blockchain, consensus protocols and

Hyperledger Fabric. In Section 3 we provide a high level view of

Fabric’s new BFT Ordering Service Node, describing the main inter-

nal components and their relation to the library. Section 4 provides

a more detailed exposition of the BFT consensus library we devel-

oped, whereas Section 5 describes the additions and modifications

we had to perform to Fabric’s orderer, peer, and client, in order to

turn it into an end-to-end BFT system. In Section 6 we evaluate the

fully integrated BFT Fabric system, and compare it to the current

Raft-based implementation. Finally, Sections 7 and 8 discuss related

work and summarize our conclusions, respectively.

2 BACKGROUND

2.1 Blockchain technology

Blockchain could be viewed as a distributed append-only immutable

data structure - a distributed ledger which maintains ordered trans-

action records between distrusting parties. Transactions are usually

grouped into blocks, and then, parties involved in the blockchain

network take part in a consensus protocol to validate transactions

and agree on an order between blocks. Blocks are linked with a hash

chain, which forms an immutable ledger of ordered transactions

(see Figure 1). Each party is responsible of maintaining its own copy

of the distributed ledger, not assuming trust on anyone else.

Header
- Number = 0
- Prev. Header Hash
- Curr. Data Hash

Body
- Config.1
(Crypto material,
Policies, Network…)

Metadata
- Last Config Index
- Orderer Info
- Signatures

Header
- N = 1
- P.H.H
- C.D.H

Body
- App.Tx.1
- …
- App.Tx.7

Metadata
- L.C.I. = 0
- O.I.
- Sigs.

…

(genesis block)

Header
- N = 9
- P.H.H
- C.D.H

Body
- Config.k

Metadata
- L.C.I. = 9
- O.I.
- Sigs.

(normal block) (config block)

{ID,Sig(ID,)}

+

H

H

Figure 1: Fabric block structure and hash chain (simplified

from [31]). A hash chain is established by including in each

header the current data hash and the previous block header

hash (red). Orderers sign a concatenation of the header and

two fields from the metadata: the last config index and or-

derer info (green). The metadata signatures field contains

an array of signing identities (orderers) and their signa-

tures. Config blocks carry a single configuration transaction,

whereas normal blocks carry a batch of application transac-

tions. The first (genesis) block is always a config block. The

metadata last config index field references the last config

block, against which the block is validated.

The consensus protocols used in blockchain platforms vary

greatly. Most enterprise blockchain platforms abandoned the ineffi-

cient and wasteful PoW in favor of some variant of a quorum-based

consensus protocol. These protocols reach a decision on a sequence

of values – which in the blockchain case is the identity and order of

A Byzantine Fault-Tolerant Consensus Library for Hyperledger Fabric , ,

transactions – when a quorum𝑄 of nodes out of a predetermined as-

sembly𝑁 are in agreement (see also StateMachine Replication [54]).

Loosely speaking, when the number of faults to protect against is

𝐹 , crash fault tolerant (CFT) protocols (e.g. Paxos [35, 36], Raft [49],

ZooKeeper [2]) need a simple majority (𝑄 = 𝐹 +1 out of 𝑁 = 2𝐹 +1),
whereas Byzantine fault tolerant (BFT) protocols require a

2

3
ma-

jority (𝑄 = 2𝐹 + 1 out of 𝑁 = 3𝐹 + 1). BFT is more expensive than

CFT: it requires more replicas to project against the same number

of faults, executes an additional communication round (3 vs. 2), and

requires the use of cryptographic primitives (digital signatures or

message authentication codes). The benefit is protection against

arbitrary faults – including malicious behavior and collusion be-

tween failed nodes – which is essential in blockchain platforms

with distributed trust at their core. Despite their cost, BFT protocols

are orders of magnitude faster then PoW based protocols, with a

negligible energy consumption.

2.2 Hyperledger Fabric

Hyperledger Fabric is an open source project, released by the Linux

Foundation
1
. It introduces a new architecture for enterprise grade

permissioned blockchain platforms following the novel paradigm of

execute-order-validate for distributed execution of smart contracts

(chaincode in Fabric).

A distributed application in Fabric is basically comprised of two

main parts: 1) Chaincode is business logic implemented in a general-

purpose programming language (Java, Go, JavaScript) and invoked

during the execution phase. 2) Endorsement policies are rules which
specify what is the correct set of peers responsible for the execution

and approval of a given chaincode invocation [10, 45].

The Fabric blockchain network is formed by nodes which could

be classified into three categories based on their roles: 1) Clients
are network nodes running the application code, which coordinate

transaction execution. Client application code typically uses the

Fabric SDK in order to communicate with the platform. 2) Peers
are platform nodes that maintain a record of transactions using an

append-only ledger and are responsible for the execution of the

chaincode and its life-cycle. These nodes also maintain a “state” in

the form of a versioned key-value store. Not all peers are responsible

for execution of the chaincode, but only a subset of peers called

endorsing peers. 3) Ordering nodes are platform nodes that form a

cluster that exposes an abstraction of atomic broadcast in order to

establish total order between all transactions and to batch them

into blocks.

In order to address the privacy concerns of business partners,

fabric introduces the concept of channels. A channel in Fabric allows

a well defined group of organizations that form a consortium to

privately transact with each other. Each channel is essentially an

independent private blockchain, with its own ledger, smart contacts,

and a well defined set of participants. An additional privacy tool in

Fabric is private data, which allows channel participants to expose

data to select members of the channel, whereas other members only

see a digest of said data.

2.2.1 Transaction flow. The following summarizes the execution

flow of a transaction submitted by a client into Fabric (see Figure 2):

1
www.linuxfoundation.org

(1) The client uses an SDK to form and sign a transaction pro-

posal. Next, the client sends the transaction proposal to a set

of endorsing peers.

(2) Endorsing peers simulate the transaction by invoking the

chaincode, recording state updates, and producing an output

in the form of a versioned read-write set. Next, each endors-

ing peer signs the read-write set and returns the result back

to the client.

(3) The client collects responses from all endorsing peers, and

validates that all endorsing peers have signed the same pay-

load. It then concatenates all the signatures of the endorsing

peers along with the read-write sets, creating a transaction.

(4) The client then submits the transaction to the ordering ser-

vice by invoking an “atomic broadcast” API. In the Raft-based

ordering service the client submits to a single orderer.

(5) The ordering service collects all incoming transactions, packs

transactions into blocks, and then orders the blocks to impose

total order of transactions within a channel context.

(6) Blocks are delivered to all the peers using a combination of

some peers pulling blocks directly from the ordering service

and a gossip-based dissemination mechanism between the

peers.

(7) Upon receiving a new block, each peer iterates over the

transactions in it and validates: a) the endorsement policy,

and b) performs multi-version concurrency control checks

against the state.

(8) Once the transaction validation has finished, the peer ap-

pends the block to the ledger and updates its state based

on valid transactions. After the block is committed the peer

emits events to notify clients connected to it.

2.2.2 The ordering service. Fabric is a modular blockchain system

supporting multiple types of ordering services. In Fabric’s first re-

lease (v1.0) the ordering service was base on Kafka [1], a replicated,

(crash) fault tolerant messaging platform. The ordering service

nodes (OSNs) sent transactions to a Kafka topic (one for each chan-

nel), and consumed from it an ordered transaction stream. Then the

OSNs employed a deterministic function that cut identical blocks

across all nodes. In this architecture the ordering nodes did not

communicate between them directly; they only acted as produc-

ers and consumers of a Kafka service. Moreover, every node was

servicing all the channels.

On release v1.4.1 Fabric introduced an ordering service based

on a Go implementation of the Raft [49] consensus algorithm from

etcd [3]. This significantly changed the architecture of the OSN.

Each channel now operates an independent cluster of Raft nodes.

An OSN can service multiple channels, but is not required to ser-

vice all of them. This permits linear scalability in the number of

channels by spreading channels across OSNs (see Figure 3). Raft is a

leader-based protocol. The leader of each cluster (channel) batches

incoming transactions into a block, and then proposes that block

to the consensus protocol. The results is a totaly ordered stream of

blocks replicated across all OSNs that service the channel. Clients

are required to submit transactions to a single node, preferably

the leader. However, transactions may be submitted to non-leader

nodes, which then forward them to the leader. At the time of this

, , Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock

Ordering
Service

Endorsing
Peers

Client

1. Send signed TX proposal to endorsing peers
3. Collect endorsements, assemble TX

4. Submit TX to ordering service

5. Pack TXs into blocks
& order blocks

7. Validate endorsements & read-set

Peers
2. Simulate TX, sign endorsement

Invoke Commit

8. Commit

6. Deliver blocks

Figure 2: Transaction flow in Fabric.

OSN1 OSN2 OSN3 OSN4 OSN5

1 2 3 4 5

1 2 3

1 2 3

1 2 3

Sys. Ch.

Ch. A

Ch. B

Ch. C

R
a

ft clu
sters

Figure 3: Fabric Ordering Service Nodes (OSNs) host multi-

ple Raft clusters, one for each channel. The participation

of OSNs in channels is configurable. The system channel is

an optional mechanism for coordinating the creation of ap-

plication channels [28]. If used, it must be deployed on all

OSNs.

writing Fabric’s latest version (v2.1) offers the Raft-base ordering

service as default, and deprecated the Kafka-base option.

2.3 BFT-SMaRt

Parts of the library presented in this paper were designed based on

the BFT-SMaRt consensus library [13]. BFT-SMaRt implements a

modular state machine replication protocol on top of a leader driven

Byzantine consensus algorithm [57]. The message pattern in the

normal case is similar to the PBFT protocol [21], i.e. pre-prepare,

prepare, and commit phases/messages.

If the current leader is faulty, a new leader is elected using a view
change protocol, which we implement with the synchronization
phase of BFT-SMaRt [57] in mind. The view change process uses

three types of messages: view change, view data, and new view.

If there is a reason to suspect the leader, such as a timeout on

a client’s request, followers send a view change message to all

nodes. This message is very short, carrying only the desired next

view number, and is required to ignite the view change process.

Next, if a quorum of view change messages is received, then nodes

send a signed view data message to the potentially new leader,

containing all needed information, such as the latest checkpoint.
Once the new leader receives at least a quorum of view data

messages and collects enough data about the current state, then it

sends a new view message, comprised of the collected view data

messages, to inform all nodes of the elected new view and leader

and the current state.

In addition, we follow the BFT-SMaRt suggested usage of clients’

requests timeouts. If a timeout is triggered on a client’s request for

the first time, the request is forwarded to the leader. This is done

because a faulty or malicious client may have sent its request only

to some of the nodes, therefore triggering a view change. If there

is a second timeout for the same request, then the node starts the

view change process.

3 ARCHITECTURE

In this section we describe the architecture of the BFT OSN, de-

picted in Figure 4. We’ll briefly describe the different components

composing an OSN and the interactions between them, deferring

the full details to sections 4 & 5, below.

After a client collects endorsements and assembles a transaction

(see Figure 2), it tries to submit it to all the OSNs (elaborated in

Section 5.5). An OSN will first filter incoming transactions using

several rules encoded in the validator; for example, verifying the

client’s signature against the consortium’s definitions, rejecting

transactions that arrive from un-authorized clients. Valid transac-

tions are then submitted to the BFT consensus library for ordering.

Submitted transactions are queued in a request pool within the

library.

The consensus library is leader based, and at any given moment

the node will operate either as a leader or a follower. A leader OSN

will batch incoming transactions, and then call the assembler to
assemble these transactions into a block. The assembler returns

A Byzantine Fault-Tolerant Consensus Library for Hyperledger Fabric , ,

consensus
library

crypto

comm

assemblervalidator

sync

se
n

d

re
cv

client
block
store

block
delivery

deliver
blockfilter

submit
tx commit

submit
tx

sync &
get last decision

to other orderers

sign &
verify sig.

assemble block
from batch

validate
tx

write

validate

re
ad

pull blocks

comm
to other orderers

block
delivery

Ordering
Service
Node

called by:
peers, orderers,

& clients

block
validation

w
ri

te

Figure 4: The architecture of a Fabric BFT-based Ordering Service Node.

a block that may contain some or all of the transactions in the

batch, and may even reorder them. The assembler is in charge of

ensuring that block composition adheres to the rules and require-

ments of Fabric. Transactions that were not included in the block

will be included in a later batch. The leader will then propose the

block, starting the consensus protocol. A follower node will receive

this block proposal from the communication component and will

revalidate every transaction in it using the same validator used by

the filter. This is done because in a BFT environment the follower

cannot trust the leader – it must therefore validate the proposal

against the application running on top of it – the Fabric blockchain.

After a block proposal passes through the first two phases of con-

sensus the commit message is signed using the crypto component

and sent to all the nodes. Every node that receives a commit uses

the crypto component to verify the signature on it. When enough

valid commit messages accumulate, the block along with all the 𝑄

commit signatures is delivered to the commit component that saves

it into the block store. We call the block and commit signatures the

“decision”.

Each OSN has a block delivery service that allows peers, orderers

and clients to request blocks from it. This is how peers get their

blocks, and this is how an OSN that was left behind the quorum

catches-up. If the consensus library suspects that it is behind the

frontier of delivered decisions, it will call the sync component,

which in turn uses the block delivery service of other OSNs in order

to pull the missing blocks. Every block that it receives goes through

a block validation component that makes sure it is properly signed

by 𝑄 OSNs, as required by the BFT protocol. When it finishes, it

will provide the library with the most recent decision.

This architecture resembles the Raft-based OSN architecture in

the sense that the consensus library is embedded within the OSN

process. However, there are important differences:

• In a Raft-OSN the block is cut before ordering and is then

submitted to the raft library for ordering. Here transactions

are submitted to the BFT library, because the librarymonitors

against transaction censorship.

• In a Raft-OSN the followers trust the leader’s block proposal

(as it can only crash fail), whereas here the followers must

revalidate the transactions within the block proposal.

• In a Raft-OSN the delivered block is signed after consensus

by the node, right before it is saved to the block store. Here

the block is signed during the consensus protocol by𝑄 nodes.

The requirements of integrating a BFT consensus library into

the Fabric OSN guided us into the definition of a library API that is

on the one hand perfectly suited to the blockchain domain, but on

the other hand is general enough to be useful in a variety of other

domains. In the next section we shed more light on the consensus

library and its API.

4 THE CONSENSUS LIBRARY AND API

We implemented a BFT consensus algorithm in a stand-alone library.

The code is open sourced [44] and is written in Go. The consensus

algorithm is mostly based on the well known PBFT algorithm [21,

22] and the BFT-SMaRt state machine replication protocol [13, 57].

In order to make the library production ready we employ some well

known techniques, such as heartbeats.

The library is not aware of what kind of application is using

it. However, it is still suited for integration with a permissioned

blockchain. This is possible by designing an interface that allows

the use of blockchain like applications. This API includes abstrac-

tions such as communication, crypto primitives, and replication.

The application is expected to provide implementations for these

abstractions. When implementing these interfaces the Byzantine

fault-tolerant nature should be taken into account, as elaborated

next.

4.1 An interface suited for a blockchain

application

In this section parts of the library’s interface is described and how

it is suited for a blockchain application. Figure 5 illustrates the API

calls made from the library to the application during the normal

case of consensus, and Figure 6 provides a code example of the API.

, , Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock

Library

Application

Client

Library

Application

Tx
Assemble

Tx

Tx

Pre-prepare Prepare

Verify
Proposal Sign

Sign

Verify
Signature

Commit

Verify
Signature

Deliver

Deliver

Leader

Follower

Figure 5: Normal case library-application flow.

Assemble(metadata []byte ,

requests [][] byte) Proposal

VerifyProposal(Proposal) error

SignProposal(Proposal) Signature

VerifySignature(Signature) error

Deliver(proposal Proposal ,

signatures [] Signature) Reconfig

Figure 6: API code example.

4.1.1 Assembler. In order to build a new proposal for the next

round of consensus, the current leader turns to the application by

calling the assembler. The leader gathers some requests/transac-

tions into a batch and gives this batch along with some metadata,

such as the sequence and view number, to the assembler. The ap-

plication, which implements the assembler, can now construct the

proposal out of the given batch and metadata in any form it wishes.

In the case of a blockchain application, this enables adding block

specific information, such as the hash of the previous block. More-

over, in Fabric, a configuration transaction must reside in a block

by itself. This rule is enforced by the assembler we implemented

within Fabric, as elaborated in Section 5.2.

4.1.2 Signing and verification. Signing occurs in two places in the

library: 1) during the commit phase nodes sign the current proposal

and send the signature as part of the commit message 2) each node

signs its view data message during the view change process.

As part of the commit phase each node collects a quorum of

commit messages, including a quorum of signatures over the pro-

posal. For a permissioned blockchain application this means that

blocks will be signed by a quorum of nodes as part of the consen-

sus process, and these signatures act as a proof that the block has

successfully undergone all the phases of consensus, as desired by

these types of applications. Using the consensus process for signa-

ture collection is done also by other blockchain specific consensus

libraries, such as Helix [11].

The actual signing and verification processes take place outside

of the library, by the application. Exposing an API for signing

and verification enables a plugable process and does not limit the

application to any kind of specific implementation.

4.1.3 Delivery. Once a node receives a quorum of commitmessages

then it delivers the committed proposal along with signatures to

the application. It is up to the application to store the delivered

proposal and signatures, as the library may dispose of this data

once the deliver call returns.

4.1.4 Verify proposal. A follower that receives a proposal in the

pre-prepare message from the leader must validate it, as the leader

may be malicious and try to harm the liveness of the entire cluster

by proposing harmful proposals. On the library side the metadata,

such as view number and sequence number, are verified. Then,

the library calls verifyProposal so that the application may run

any kind of checks it wishes. For example, in Fabric, we make sure

that the proposal is constructed as a valid and correctly numbered

block, its header contains the hash of the previous block, and all

transactions in the block are valid Fabric transactions.

4.1.5 Synchronization. There are some cases where a node sus-

pects it is behind by several commits and it initiates a replication

protocol. The library calls sync and the application is responsible

for running a replication protocol. The application must make sure

the replication is suited for a Byzantine environment, meaning it

needs to validate signatures of a quorum of nodes on the proposals

fetched, otherwise malicious nodes would be able to forge propos-

als. In Section 5.2 we specify our implementation in Fabric, which

serves as an example for a Byzantine aware implementation.

Even though the library delegates data synchronization to the

application layer, it still needs to take care of a special corner case: If

the cluster has gone through a view change without a new proposal

being committed afterwards, the latest proposal that a late node will

synchronize doesn’t contain information about the view change.

To that end, after the synchronization ends, the control is returned

from the application to the library, and it performs remote queries

to all nodes and seeks to obtain answers from 𝐹 + 1 different nodes

A Byzantine Fault-Tolerant Consensus Library for Hyperledger Fabric , ,

that agree on a view higher than known to the synchronized node.

This ensures the node can catch up with the cluster and improves

fault tolerance.

4.1.6 Communication. The library assumes the existence of a com-

munication infrastructure that implements point to point authenti-

cated channels. The infrastructure notifies the library whenever a

new message arrives as well as the identifier of the node that sent

it, and sends messages to requested nodes on behalf of the library.

The library distinguishes between two types of messages:

• Forwarded clients’ requests: Recall, as per the consensus

algorithm, clients send requests to all nodes and not just to

the leader. Whenever a client’s request is not included in a

batch in a timely manner, every non-faulty follower sends

the request to the leader. This is done to prevent malicious

clients from sending messages only to followers, forcing a

view change and thus impairing liveness.

• Consensus protocolmessages: This includes all othermes-

sages sent between nodes, namely pre-prepares, prepares,

commits, view change protocol messages, and heartbeats.

Unlike request forwarding, here it is vital that the message

sending would be a wait free operation, otherwise the exe-

cution of the protocol can be indefinitely stalled.

4.1.7 WAL. The WAL (write-ahead log) is a plugable component,

and we provide a simple implementation (the implementation is

inspired by the WAL in Raft [5]). The WAL merely maintains the

latest state, and does not store the entire history. The main part

of the storage is delegated to the application, by assuming that

deliver returns only after safely storing the committed proposal

and signatures. This is suitable for a blockchain application.

4.1.8 Verify client’s request. The library assumes the application

submits only valid clients’ requests, however, there are cases where

a client’s request must be reverified: 1) if a follower forwards a

request to the leader after a timeout, the leader calls verifyReqest

2) if the configuration changed, as elaborated next, then all of the

clients’ requests must be reverified.

4.2 Reconfiguration

The library supports dynamic (and non-dynamic) reconfiguration.

Unlike other common consensus libraries such as etcd/raft, re-

configuration is done implicitly and not explicitly: Instead of the

application sending an explicit reconfiguration transaction to the

library, the library infers its configuration status after each commit.

This enables us to reconfigure the system in an atomic manner.

To that end, the library exposes an API for delivery and synchro-

nization that returns a reconfig object that states whether there

was a reconfiguration and what is the new configuration. In the

case of synchronization, the reconfiguration could have been in any

of the replicated proposals, and not necessarily in the last one. If the

returned reconfig object states that there was a reconfiguration,

the library closes all of its components and reopens them with the

new configuration. Since there is no pipeline implemented in the

library, there is no need for any kind of flush after a reconfiguration.

Moreover, since reconfiguration in the application layer is de-

rived from transactions, we state that it is up to the application to

validatewhether a proposal contains a valid reconfiguration transac-

tion. Specifically, it is expected that proposal verification (Sec 4.1.4)

for proposals carrying reconfiguration transactions would involve

further checks than standard transactions, including but not limited

to whether the client that signed the transaction has administrative

privileges.

In addition, the configuration may affect the validity of the

clients’ requests. And so the application maintains a verifica-

tionSeqence as an identifier of the current configuration. This

sequence is checked by the library after each deliver and sync,

and if the sequence changed then the library reverifies all of the

pending clients’ requests.

5 BYZANTINE FAULT-TOLERANT

HYPERLEDGER FABRIC

In order to turn Fabric into an end-to-end BFT system we had to

make changes that go beyond replacing the Raft consensus library

with our BFT library. In this section we describe the important

changes that had to be made.

5.1 Block structure and signatures

Fabric’s block is composed of a header, a payload, and metadata.

The header contains the block number, the hash of the current

payload, and the hash of the previous block. The payload contains

transactions. The metadata contains three important fields: (a) the

index of the last config block, (b) a consenter specific information,

and (c) orderer signatures (see Figure 1).

The signature is over the block header, fields (a) and (b) of the

block metadata, and the signer’s identity.

Our implementation does not change the Fabric block structure.

However, we change the type of consenter dependent information

in it to the ViewID and Sequence number from the consensus library.

Moreover, unlike in a Raft-based orderer, orderers sign the block

during the consensus process, such that when a block is delivered

from the library, its respective metadata signatures field already

contains 𝑄 signatures. In contrast, in a Raft-based orderer each

orderer independently signs the block just before commit.

5.2 The orderer node

Changing the orderer node to work with our library amounts to

implementing the logic that initializes the library, submits transac-

tions to the library, and handles invocations from the library. The

invocations from the library are defined by the interfaces described

in the previous section, and require the implementation of a few

simple components that reuse existing Fabric capabilities.

Synchronization When an orderer node falls behind the clus-

ter, it needs to catch-up and synchronize. This is done by

requesting blocks from other cluster members. First, the

node polls all members of the cluster for their block height.

It then chooses a neighbor to pull blocks from. In the Raft

implementation, the node with the highest block number is

selected, and is requested for blocks up until that number.

However, in a Byzantine environment we have to take into

account that nodes may lie about their height. A malicious

node may declare a large height and stall the synchroniza-

tion. We therefore sort the heights and take the (𝑓 + 1)𝑡ℎ

, , Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock

largest height as the height-target. The node then starts

pulling blocks from all neighbors (instead of just one) up

until the height-target.

Block assembly The block assembler is in charge of inspect-

ing a batch of incoming transactions offered to it by the

leader of the cluster, and returning a block of transactions

that is build in accordancewith the semantics of the blockchain

implemented on top of the library. In Fabric, these rules in-

dicate that a configuration transaction must be packed in

a block by itself. The assembler is the place for incorporat-

ing transaction reordering optimizations such as the one

described in [56].

Signer and Verifier The signer and verifier implementations

simply wrap the already existing capabilities of Fabric to

sign and verify data.

5.3 Block validation

Every time a fabric node receives a block from another node outside

of the consensus process, it must validate that the block is properly

signed. This happens in three different scenarios: 1) when a peer

receives a block from the ordering service, 2) when a peer receives a

block from another peer during the gossip protocol, and 3) when an

ordering node receives a block from another ordering node during

the synchronization protocol. For that end, Fabric defines a block

validation policy, which specifies the criteria that the signatures on

the block must match. The default policy in Fabric is to require a

single signature from a node that belongs to any of the organizations

that compose the ordering service consortium. For a BFT service,

this is obviously not enough.

We implemented a new validation policy that requires that the

block be sighed by 𝑄 out-of 𝑁 nodes. Moreover, we require that

these signatures are from specific nodes – the consenter set de-

fined in the last channel configuration transaction. This means

that the new validation policy we defined must be dynamically up-

dated every time the consenter set is updated with a configuration

transaction, which was previously not supported.

5.4 The peer

If Fabric, blocks are disseminated to the peers using a combination

of techniques. First, the peers that belong to the same organization

elect a leader. Then, that leader receives blocks from the ordering

service by requesting a stream of new blocks from a randomly

selected ordering node – this is called the “delivery service”. Then,

all the peers including the leader engage in a gossip protocol in

order to further disseminate the blocks to all the peers. If non-leader

peers suspect the leader, they re-elect a new one.

In our BFT implementation, the blocks that are received from

the ordering service cannot be forged, because they are signed by

at least 2𝐹 + 1 ordering nodes. However, receiving the stream of

blocks from a single orderer exposes the peer to a censorship attack.

In fact, up to 𝐹 orderers may collude and mount this attack. Note

that this behavior may also result from bugs or mal-functions that

cause the orderer to stop sending new block, and not necessarily

from malicious behavior. To protect against this scenario we im-

plemented a block delivery service that is resilient to this sort of

attack.

A naive solution is for the peer to ask for the block stream

from 𝐹 + 1 ordering nodes. This is expensive because blocks are

large. In contrast, our approach takes advantage of the Fabric block

structure, in which the orderer signs the hash of the block content,

not the content itself (see Figure 1). This allows a peer to verify the

signatures on a received block even if the block’s content is omitted

– using only the block header and metadata.

We augment the delivery service and allow a peer to request

a new kind of delivery – a stream that contains only the header

and metadata of each new block – a Header-Sig stream . The peer

requests a stream of full blocks from a randomly selected orderer,

and a Header-Sig stream from all the rest. The peer then monitors

the front of delivered blocks: if 𝐹 or more Header-Sig streams are

ahead of the full block stream for more than a threshold period,

then the peer suspects the orderer that delivers full blocks. When

that happens, the peer demotes that orderer to deliver a Header-Sig
stream, and selects another orderer to deliver a full block stream.

5.5 The client

In the Raft CFT setting a client is only required to submit a transac-

tion proposal to a single orderer. If the orderer is not the leader, it

simply forwards that transaction to the leader. In a BFT setting that

does not work, because any 𝐹 orderers may be malicious and simply

drop the transaction. We therefore modified the client in the Fabric

Java SDK [32] to submit every transaction to all the orderers.

6 EVALUATION

We evaluate the performance of our Byzantine Fault-Tolerant or-

dering service for Hyperledger Fabric that integrates our consensus

library.

6.1 Setup

We consider both LAN and WAN setups, and evaluate the per-

formance with different cluster sizes (4, 7, 10) and with various

configurations of batch sizes or number of transactions per block

(100, 250, 500, 1000). We use a homogeneous virtual machine speci-

fication for all nodes with a 16 core Intel(R) Xeon(R) CPU E5-2683

v3 @ 2.00GHz with 32GB RAM and SSD hard drives.

To ascertain our system can be deployed in real life scenarios,

in our WAN setup we spread the servers across the entire globe

to maximize the latency: We deploy servers in Dallas, London,

Washington, San Jose, Toronto, Sydney , Milan, Chennai, Hong

Kong, and Tokyo. In all of our test runs, the leader is located in

London and the average latency from it to the followers is 133ms

with a median of 112ms, and ranges starting from a few dozens

milliseconds in the case of followers in the same continent, to

250ms in the worst case (to Tokyo). We repeat each test 10 times

and present the average result.

In order to generate traffic, we pre-allocate an in-memory heap

of 1.4 million Fabric transactions each sized 3,993 bytes (fit for a

transaction which contains 3 certificates of endorsing peers) and

send it to the leader from 700 concurrent workers. Sending transac-

tions at a high rate from 700 different threads ensures the leader

always saturates the blocks as much as the configured batch size

allows it. Then, we pick a node and analyze its logs to determine

A Byzantine Fault-Tolerant Consensus Library for Hyperledger Fabric , ,

the time it took to commit a specified number of blocks and com-

pute the throughput. Additionally, we measure the time it takes to

perform CPU computations and I/O operations to further analyze

the bottlenecks and argue about possible optimizations.

6.2 Performance: BFT versus Raft

We compare our BFT ordering service with the existing state of the

art Raft ordering service (Fabric v2.1) and benchmark it in the same

setup with similar cluster sizes (5 to 11).

LAN evaluation: The first experiment is conducted with a LAN

setup. Figure 7 depicts the throughput (in transactions per second)

with various block sizes (derived from the number of transactions

in a block, as all transactions are identically sized).

The throughput of our BFT type ordering service is dominated by

the block size, as the more transactions that are fit into a block, the

more transactions are transferred over the network in a consensus

round which involves the 3 phases.

For BFT, A rate of 2,500 transactions per second means sending

80Mb of traffic per second per node, and even in a cluster of 10

nodes, it means a total fan-out of 720 Mb per second. In a local

area network such a throughput is not enough to be a bottleneck,

and this is aligned with our results where we get similar through-

put regardless of cluster size. In contrast, for Raft the situation is

different, and at a throughput of 12,000 transactions per second,

the leader sends 375Mb to each of the 10 followers which starts

hindering the throughput, and indeed we see that the throughput of

an 11-sized cluster is smaller than the counterparts. Oddly enough,

the throughput of the 7-sized cluster is slightly higher.

Since the latencies in block propagation in our LAN setup are

negligible and range between less than a millisecond to a few mil-

liseconds, we attribute the differences in throughput mainly to

the high CPU processing overhead that is mandatory in BFT, but

doesn’t exist in Raft. We measured the time it took to perform local

CPU computations for block verification, such as signature checks

on transactions, and hash chain validation on blocks. Additionally,

we measure the time to perform various I/O operations that are part

of the consensus stages such as writing to the Write-Ahead-Log

and we present them in (6.3).

WAN evaluation: Next we present an experiment with a WAN

setup. Figure 8 shows the performance of a setup identical in terms

of cluster size and block size, however the servers are deployed

across 10 different data centers across the globe.

Here, throughput is significantly reduced both in BFT and in

Raft. In the case of 1,000 transactions per block, the BFT throughput

is reduced to 40% of the LAN setup, and to 20% in for Raft.

Recall that in our BFT, the leader starts consensus on a block only

when the previous block has been committed. In contrast, Raft can

consent on blocks that extend the blockchain despite the previous

blocks haven’t been consented yet. An interesting phenomenon

is that such a pipelining mechanism should in theory make up

for the high latency, however our measurements of Raft reach a

throughput about 3,000 TPS even in the case of 5 nodes, which hint

that the WAN bandwidth is saturated very early.

Unlike in the LAN case, in the WAN setup for BFT, the latency

plays the biggest role and not the CPU computation, and as a result

the drop in performance is more severe as the block size decreases.

6.3 Latency of BFT consensus

Our consensus algorithm is non-pipelined, meaning that the leader

sends a pre-prepare for block 𝑖 only after it has committed block

𝑖 − 1. Hence, when deploying our system in a low latency and

high bandwidth environment such as a local area network, the

performance is greatly effected by local operations such as CPU

computation and disk I/O.

We measure the time it takes to perform both CPU computations

and disk I/O, analyze the results and present them in Figure 9-

a. Additionally, we provide a normalized analysis of latency per

transaction based on the number of transactions in a block, which

shows that increasing block size leads to efficiency gains. Next, we

elaborate on what each of the operations entails:

• TotalProposalVerification: The total time it takes for a fol-

lower to verify a pre-prepare message sent from the leader

which entails transforming the proposal to Fabric representa-

tion, then performing transaction verification, and verifying

the hash chain is built properly.

• TxnVerification: This involves verifying the signature of

the client on the transaction. This is needed in order to pre-

vent the leader including forged transactions in the Blockchain

which even if will be invalidated by peers, needlessly extend

the blockchain, take up storage space and pose a perfor-

mance overhead. In our implementation, we allocate a single

goroutine per transaction, and they are executed in parallel

based on the Go runtime’s scheduling.

• ProposalToBlock: Being a general purpose consensus li-

brary, we delegate all validation to the application layer.

Therefore, Fabric needs to transform the proposal to its own

representation and this mainly involves protocol buffer seri-

alization.

• PrePrepareWAL: The time it takes to persist the proposal

to the WAL. This is needed for crash fault tolerance, and is

done in CFT consensus as well. The time it takes to write

the prepare and commit messages is not shown because it is

negligible.

• HashChainVerification: Given a proposal which comprises

the candidate to be the next block of the chain, we check that

the header indeed points to the hash of the previous block,

and that the data hash of the block derived from the proposal

matches the computed data hash. As seen in Figure 9, the

hash chain verification is linear in the size of the block. That

is because the block hash in Fabric is a cumulative hash, and

not a Merkle tree one, therefore it cannot be parallelized.

• Deliver: When a a quorum of signatures are collected for a

proposal, our library hands over the proposal and its corre-

sponding signatures to Fabric, where the block is appended

to the ledger, and the indices that locate the block inside

the block storage are updated. Interestingly, this takes much

more time than writing the pre-prepare to the WAL, which

is probably because it involves random writes and not se-

quential ones as in the WAL case.

• CommitCollectVerify: This involves the time to collect a

quorum of signed commit messages as well as to validate

the signatures.

, , Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock

(a) BFT (b) Raft

Figure 7: Cluster throughput as a function of block size, in a LAN, for BFT and Raft. Transaction size is 3993B.

(a) BFT (b) Raft

Figure 8: Cluster throughput as a function of block size, in a WAN, for BFT and Raft. Transaction size is 3993B.

Conclusions and possible optimizations: In local area net-

works, our throughput is effected mostly by time spent in local

operations such as CPU computation and disk I/O. Several improve-

ments might be considered:

(1) Parallel data hash computation: If we replace the Fabric

block data hash to a Merkle tree, one can split the Merkle

tree to a 𝑘 parts equal in size and compute each part in par-

allel, after which 𝑙𝑜𝑔2 (𝑘) layers would be left which can be

computed serially. Given 𝑛 transactions, such a mechanism

would compute 2
𝑙𝑜𝑔2(𝑛)−𝑙𝑜𝑔2(𝑘)

of the Merkle tree in
1

𝑘
of

the time.

(2) Asynchronous commit: As can be seen in Figure 9, the

time required for the application to commit the block (De-
liver) is much larger than the time it takes to persist it to

the Write Ahead Log (WAL). Therefore, we can instead just

write the commit messages to the WAL and let the applica-

tion perform the commit asynchronously.

7 RELATEDWORK

7.1 Byzantine fault tolerance

The ability to maintain and keep a consistent and immutable se-

quence of transactions shared between mutually distrustful parties

is one of the keystones of blockchain platforms. In this work, this is

achieved by utilizing the principals of the Byzantine fault tolerant

A Byzantine Fault-Tolerant Consensus Library for Hyperledger Fabric , ,

(a) Latency of local operations (b) Normalized latency of local operations

Figure 9: The cost of each stage in the BFT consensus protocol, in LAN: (a) The latency of each stage, as a function of block

size and cluster size (left). (b) The normalised latency of each stage (latency / number of TXs in block) for a 10 node cluster.

State Machine Replication (SMR) [54], which is equivalent to reach-

ing agreement among distributed replica sets in light of possible

Byzantine failures [52]. SMR relies on the ability to reach consen-

sus on the total order of replicated commands [37, 55]. Therefore,

consensus is usually used as a building block while implementing

SMR protocols. The first formal definition of BFT consensus was

stated by Lamport et al. [39]. The first protocol to attend the prob-

lem assuming synchronous network communication was suggested

by Pease et al. [50], improved shortly after by Dolev and Strong [26]

providing an optimal message complexity pattern [25].

While trying to provide a solution for Byzantine consensus in

an asynchronous setting, it was proven to be impossible to devise

deterministic algorithms in presence of even a single failure [29].

Several approaches were suggested to overcome this impossibility

result: a) introducing partial synchrony assumptions [24, 27], b)

relying on randomization [12, 51, 59], and c) failure detectors [8, 18].

Dwork et al. was the first to introduce the partial synchrony net-

work model, where the system maintains safety during asynchro-

nous periods, and resumes liveness after a point in time in which

the system reassumes synchrony. The Practical Byzantine Fault

Tolerant (PBFT) algorithm developed by Castro and Liskov [21]

was a pioneering practical solution under the partial synchrony

model. PBFT was the first consensus protocol to solve SMR in

presence of Byzantine failures, laying the foundation to extensive

research work [6, 23, 34]. To a large extent, PBFT was inspired by

the Paxos [38] protocol, consisting of three sub-protocols: 1) normal

operation, 2) checkpoint, and 3) view change. The normal operation

requires𝑂 (𝑛2) messages to reach consent on certain value, whereas

view change requires 𝑂 (𝑛3) messages. Many optimizations were

suggested to improve PBFT, in particular, BFT-SMaRt [13] was de-

signed to optimize communication complexity of replacing a faulty

leader. Zyzzyva [33] introduced the idea of optimistic speculative

execution; however, severe safety violations were found in it by

Abraham et al. [7], later leading to the development of the SBFT [30]

protocol, fixing these safety violations.

7.2 Blockchain and BFT

In general, the increasing interest in blockchain lead to the devel-

opment of algorithms such as Tendermint [16], HotStuff [61] and

SBFT [30], where the key focus is on improving the view change

sub-protocol or replacement of a faulty leader.

Many decades of research lead to BFT protocols exploiting ran-

domization to provide consensus solution in the asynchronous

model, with well known classical results such as [12, 14, 19, 59].

However, these protocols are far from being practical due to their

poor performance. Only recently Miller et al. [48] suggested a lead-

erless randomized algorithm with reasonable and promising per-

formance results.

Despite the renaissance of research around BFT consensus al-

gorithms, triggered primarily by increased interest in blockchain,

there are only a few openly available implementations suitable

for production-grade exploitation [40–42]. Unfortunately, existing

libraries lack a practical reusable interface which is flexible and

generic enough to implement a BFT-enabled ordering service for

Hyperledger Fabric. Any implementation based on a programming

language other than Go would have exhibited the same drawbacks

as the Kafka based ordering service architecture, where the con-

sensus component will have been deployed as an external service.

In the quest to develop a clustered ordering service based on an

embedded consensus library, we had to write our own library.

7.3 BFT-Smart and Hyperledger Fabric

In its first release, the Fabric ordering service was based on the

Kafka messaging service. In this implementation, the OSNs receive

transactions from clients, and submit them to a Kafka topic, one

topic for each Fabric channel. All OSNs would consume from the

topics – again, one topic per channel – and therefore receive a totally

ordered stream of transactions per channel. Each OSN would then

deterministically cut the transaction stream into blocks.

, , Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock

In 2018 Sousa et al. [58] made an attempt to convert this imple-

mentation into a BFT ordering service. They replaced the Kafka

service with a cluster of BFT-Smart based servers, where each server

consisted of a BFT-Smart core wrapped with a thin layer that al-

lowed it to somewhat “understand” Fabric transactions. The proof

of concept presented in the paper exhibited promising performance,

but was eventually not adopted by the community. The community

discussions reveal a mix of fundamental and technical reasons for

that [4].

The solution presented was composed of two processes (orderer

front-end and BFT server), written in two languages (Go & Java,

resp.). That was not well received as it complicates the development,

maintenance, and deployment of the ordering service. The experi-

ence gained with the Kafka-based service motivated the community

to move towards a single process that embeds a consensus library,

as eventually happened with the introduction of the Raft-based

ordering service in Fabric v1.4.1.

There were, however, more fundamental reasons. The code that

wrapped the BFT-Smart core did not include Fabric’s membership

service provider (the MSP), which defines identities, organizations,

and certificate authorities (CAs), and includes the cryptographic

tools for the validation of signatures. Therefore, the BFT cluster

signatures where not compliant with Fabric’s, and the identities

of the BFT cluster servers were not part of Fabric’s configuration.

In fabric, configuration is part of the blockchain (see Figure 1) and

must be agreed upon. Incorporating the Java BFT cluster endpoints

and identities (certificates & CAs) into the configuration flowwould

have meant providing a Java implementation to an already highly

sensitive component. This shortcoming also meant that the front-

end orderers had to collect 2𝐹 + 1 signed messages from the BFT

cluster servers, increasing the number of communication rounds

to four.

The blocks produced by the front-end servers included only

the signature of a single front-end orderer. This does not allow an

observer of the blockchain (or a peer) to be convinced that the block

was properly generated by a BFT service. Moreover, even if the

2𝐹 + 1 BFT cluster signatures were included in the block metadata,

that does not help an observer, as the identities of said servers are

not included in Fabric’s configuration. Moreover, peers and clients

did not have the policies that correspond to the BFT service they

consumed from.

Another subtle problem with a monolithic BFT cluster is that

it does not allow a follower to properly validate the transactions

proposed by the leader against the semantics of Fabric – again –

without pulling in a significant amount of Fabric’s code.

BFT-Smart owns much of its performance to the internal batch-

ing of requests. However, those batches are not consistent with the

blocks of Fabric, so had to be un-packed, multiplexed into different

channels, and then re-packed into Fabric blocks.

These problems were in front of us when we designed the library

and its integration with Fabric. The interface of the library allowed

us to seamlessly integrate with Fabric’s MSP and configuration flow.

Our implementation allows the leader to assemble blocks according

to fabric’s rules, so transactions are batched once. It allows followers

to validate the transactions against Fabric’s semantics during the

consensus protocol, and it collects the quorum signatures during the

commit phase. This reduces the number of communication rounds

to three, and allows the observer of a single block to validate the

correctness of the BFT protocol. The corresponding block validation

policy was added to the peer and orderer for that affect, and the

SDK client was augmented to interact properly with a BFT service.

7.4 Tendermint and Hyperledger Fabric

Another optionwe consideredwas to re-use the Tendermint Core [42]

as an embedded consensus library. There is anApplication Blockchain

Interface (ABCI) which defines an API between the BFT protocol

and SMR (application). However, the consensus protocol itself ac-

tually implements the blockchain, with batches of transactions

chained together forming the ledger. The ABCI only provides an

interface for the application to validate and execute transaction.

That implies that using Tendermint as a consensus library in the

Fabric ordering service node would have resulted in a ledger with

Tendermint blocks in addition to the ledger maintained by Fabric.

Tendermint implements a peer-to-peer communication protocol

inspired by the station-to-station protocol, where each network peer

uses ED25519 key pairs as a persistent long term node ID. When

peers establish a peer-to-peer connection they exchange generated

X25519 ephemeral session keys, which are used to produced a

shared secret similar to Diffie Hellman key exchange [47]. After the

shared secret is generated it is used for symmetric encryption to

secure the communication medium. However, there are two major

caveats:

(1) This system is still vulnerable to a Man-In-The-Middle attack

if the persistent public key of the remote node is not known

in advance.

(2) This significantly deviates from the communication model

of the Fabric and current implementation is too coupled into

the Tendermint Core, hence would have required substantial

refactoring.

Overall, the lack in configuration flexibility and the inability to

replace the communication layer lead us towards the decision to

implement our own BFT library instead.

8 CONCLUSION

In this paper we described the design, implementation, and eval-

uation of a BFT ordering service for Hyperledger Fabric. In the

heart of this implementation lies a new consensus library, based on

the BFT-Smart protocol, and written in Go. The library presents a

new API suited for permissioned blockchain applications, such as

Fabric. It delegates many of the core functions that any such library

must use to the application employing it, allowing for maximal

flexibility and generality. For example, cryptographic functions,

identity management, as well as point to point communication are

not embedded but are exposed through proper interfaces, to be

implemented by the application using it. This allowed us to re-use

some of the sophisticatedmechanisms that Fabric already possessed.

In the quest to make Fabric a truly end-to-end BFT system, it is

not enough to augment the ordering service alone. We took special

care to ensure that the peer and the client SDK interact properly

with the BFT ordering service.

We chose to implement the BFT-Smart protocol because of its

simplicity and elegance. This protocol is significantly simpler than

A Byzantine Fault-Tolerant Consensus Library for Hyperledger Fabric , ,

PBFT, because it does not allow for a transaction pipeline. In BFT-

Smart there is only a single proposed transaction by a given leader

at any point in time, which dramatically simplifies the view change

sub-protocol. This simplicity greatly increases our confidence in

the correctness of the implementation and reduced the effort it took

to implement the library. However, these advantages come with a

cost – reduced performance. This is especially salient when com-

paring against the highly mature and optimized etcd/raft library,

which uses pipelining extensively. Despite the cost of reduced per-

formance relative to etcd/raft, our implementation exhibits levels of

performance that are sufficient for most permissioned blockchain

applications: a 7 node BFT ordering service (𝐹 = 2) can support over

2500 TPS in a LAN, and over 1000 TPS in a WAN. These numbers

are for a single channel; a Fabric network can scale horizontally by

adding channels.

REFERENCES

[1] [n.d.]. Apache Kafka. https://kafka.apache.org.

[2] [n.d.]. Apache ZooKeeper. https://zookeeper.apache.org.

[3] [n.d.]. etcd: A distributed, reliable key-value store for the most critical data of a

distributed system. https://etcd.io and https://github.com/etcd-io/etcd.

[4] 2018. Regarding byzantine fault tolerance in Hyperleder Fabric. https://lists.

hyperledger.org/g/fabric/topic/17549966#3135. A thread on the Hyperledger

mailing list.

[5] 2020. The Raft Consensus Algorithm. https://raft.github.io.

[6] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter,

and Jay J Wylie. 2005. Fault-scalable Byzantine fault-tolerant services. ACM
SIGOPS Operating Systems Review 39, 5 (2005), 59–74.

[7] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and Jean-

Philippe Martin. 2017. Revisiting fast practical byzantine fault tolerance. arXiv
preprint arXiv:1712.01367 (2017).

[8] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. 2000. Failure detection

and consensus in the crash-recovery model. Distributed computing 13, 2 (2000),

99–125.

[9] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh

Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula

Stathakopoulou, Marko Vukolić, SharonWeed Cocco, and Jason Yellick. 2018. Hy-

perledger Fabric: A Distributed Operating System for Permissioned Blockchains.

In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys
’18). ACM, New York, NY, USA, Article 30, 15 pages. https://doi.org/10.1145/

3190508.3190538

[10] E. Androulaki, A. De Caro, M. Neugschwandtner, and A. Sorniotti. 2019. Endorse-

ment in Hyperledger Fabric. In 2019 IEEE International Conference on Blockchain
(Blockchain). 510–519.

[11] A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz, O. Rottenstreich, R. Tamari,

and D. Yakira. 2018. A Fair Consensus Protocol for Transaction Ordering. In 2018
IEEE 26th International Conference on Network Protocols (ICNP). 55–65.

[12] Michael Ben-Or. 1983. Another advantage of free choice (Extended Abstract)

Completely asynchronous agreement protocols. In Proceedings of the second
annual ACM symposium on Principles of distributed computing. 27–30.

[13] A. Bessani, J. Sousa, and E. E. P. Alchieri. 2014. State Machine Replication for the

Masses with BFT-SMaRt. In 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. 355–362. https://doi.org/10.1109/DSN.2014.43

[14] Gabriel Bracha. 1984. An asynchronous [(n-1)/3]-resilient consensus protocol.

In Proceedings of the third annual ACM symposium on Principles of distributed
computing. 154–162.

[15] Richard Gendal Brown. 2018. The Corda Platform: An Introduction. (2018).

[16] Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of
blockchains. Ph.D. Dissertation.

[17] Ethan Buchman, Jae Kwon, and Zarko Milosevic. 2018. The latest gossip on BFT

consensus. CoRR abs/1807.04938 (2018). arXiv:1807.04938 http://arxiv.org/abs/

1807.04938

[18] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-

cure and efficient asynchronous broadcast protocols. In Annual International
Cryptology Conference. Springer, 524–541.

[19] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random oracles in Con-

stantinople: Practical asynchronous Byzantine agreement using cryptography.

Journal of Cryptology 18, 3 (2005), 219–246.

[20] Christian Cachin and Marko Vukolic. 2017. Blockchain Consensus Protocols in

the Wild. CoRR abs/1707.01873 (2017). arXiv:1707.01873 http://arxiv.org/abs/

1707.01873

[21] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.

In Proceedings of the Third Symposium on Operating Systems Design and Imple-
mentation (New Orleans, Louisiana, USA) (OSDI ’99). USENIX Association, USA,

173–186.

[22] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine Fault Tolerance

and Proactive Recovery. ACM Trans. Comput. Syst. 20, 4 (Nov. 2002), 398–461.
https://doi.org/10.1145/571637.571640

[23] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba

Shrira. 2006. HQ replication: A hybrid quorum protocol for Byzantine fault

tolerance. In Proceedings of the 7th symposium on Operating systems design and
implementation. 177–190.

[24] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. 1987. On the minimal

synchronism needed for distributed consensus. Journal of the ACM (JACM) 34, 1
(1987), 77–97.

[25] Danny Dolev and Rüdiger Reischuk. 1985. Bounds on information exchange for

Byzantine agreement. Journal of the ACM (JACM) 32, 1 (1985), 191–204.
[26] Danny Dolev and H Raymond Strong. 1982. Polynomial algorithms for multiple

processor agreement. In Proceedings of the fourteenth annual ACM symposium on
Theory of computing. 401–407.

[27] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the

presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.
[28] Fabric RFC Repository 2020. Channel participation API without a system chan-

nel. https://github.com/hyperledger/fabric-rfcs/blob/master/text/0000-channel-

participation-api-without-system-channel.md.

[29] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility

of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374–382.

[30] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,

Michael K Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2018.

SBFT: a scalable decentralized trust infrastructure for blockchains. arXiv preprint
arXiv:1804.01626 (2018).

[31] Hyperledger Fabric Documentation 2020. The blockchain data struc-

ture. https://hyperledger-fabric.readthedocs.io/en/release-2.0/ledger/ledger.

html#blockchain.

[32] Java SDK Library Repository 2019. The Java SDK Library Open-Source Repository

(anonymized for blind review). https://github.com/xxx/fabric-sdk-java.

[33] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund

Wong. 2007. Zyzzyva: speculative byzantine fault tolerance. ACM SIGOPS
Operating Systems Review 41, 6 (2007), 45–58.

[34] Ramakrishna Kotla and Michael Dahlin. 2004. High throughput Byzantine fault

tolerance. In International Conference on Dependable Systems and Networks, 2004.
IEEE, 575–584.

[35] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2
(May 1998), 133–169. https://doi.org/10.1145/279227.279229

[36] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001) (December 2001),

51–58. https://www.microsoft.com/en-us/research/publication/paxos-made-

simple/

[37] Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed

system. In Concurrency: the Works of Leslie Lamport. 179–196.
[38] Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001),

18–25.

[39] Leslie Lamport, Robert Shostak, andMarshall Pease. 2019. The Byzantine generals

problem. In Concurrency: the Works of Leslie Lamport. 203–226.
[40] Library Repository 1999. Source code, Practical Byzantine Fault Tolerance. http:

//www.pmg.csail.mit.edu/bft//.

[41] Library Repository 2016. The Honey Badger of BFT Protocols. https://github.

com/initc3/HoneyBadgerBFT-Python/.

[42] Library Repository 2016. Tendermint Core: Byzantine-Fault Tolerant State Ma-

chines. https://github.com/tendermint/tendermint.

[43] Library Repository 2019. Hyperledger Fabric BFT Open-Source Repository

(anonymized for blind review). https://github.com/xxx/fabric.

[44] Library Repository 2019. The Library Open-Source Repository (anonymized for

blind review). https://github.com/xxx/consensus.

[45] Y Manevich, A Barger, and Y Tock. 2019. Endorsement in Hyperledger Fabric

via service discovery. IBM Journal of Research and Development 63, 2/3 (2019),
2:1–2:9.

[46] David Mazières. 2015. The Stellar Consensus Protocol : A Federated Model for

Internet-level Consensus. (2015).

[47] Ralph C Merkle. 1978. Secure communications over insecure channels. Commun.
ACM 21, 4 (1978), 294–299.

[48] AndrewMiller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. TheHoney

Badger of BFT Protocols. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (Vienna, Austria) (CCS ’16). Association
for Computing Machinery, New York, NY, USA, 31–42. https://doi.org/10.1145/

https://kafka.apache.org
https://zookeeper.apache.org
https://etcd.io
https://github.com/etcd-io/etcd
https://lists.hyperledger.org/g/fabric/topic/17549966#3135
https://lists.hyperledger.org/g/fabric/topic/17549966#3135
https://raft.github.io
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/DSN.2014.43
https://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1707.01873
http://arxiv.org/abs/1707.01873
http://arxiv.org/abs/1707.01873
https://doi.org/10.1145/571637.571640
https://github.com/hyperledger/fabric-rfcs/blob/master/text/0000-channel-participation-api-without-system-channel.md
https://github.com/hyperledger/fabric-rfcs/blob/master/text/0000-channel-participation-api-without-system-channel.md
https://hyperledger-fabric.readthedocs.io/en/release-2.0/ledger/ledger.html#blockchain
https://hyperledger-fabric.readthedocs.io/en/release-2.0/ledger/ledger.html#blockchain
https://github.com/xxx/fabric-sdk-java
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
http://www.pmg.csail.mit.edu/bft//
http://www.pmg.csail.mit.edu/bft//
https://github.com/initc3/HoneyBadgerBFT-Python/
https://github.com/initc3/HoneyBadgerBFT-Python/
https://github.com/tendermint/tendermint
https://github.com/xxx/fabric
https://github.com/xxx/consensus
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/2976749.2978399

, , Artem Barger, Yacov Manevich, Hagar Meir, and Yoav Tock

2976749.2978399

[49] Diego Ongaro and JohnOusterhout. 2014. In Search of an Understandable Consen-

sus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX Association,

USA, 305–320.

[50] Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching agreement

in the presence of faults. Journal of the ACM (JACM) 27, 2 (1980), 228–234.
[51] Michael O Rabin. 1983. Randomized byzantine generals. In 24th Annual Sympo-

sium on Foundations of Computer Science (sfcs 1983). IEEE, 403–409.
[52] Michael K Reiter. 1995. The Rampart toolkit for building high-integrity services.

In Theory and practice in distributed systems. Springer, 99–110.
[53] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.

2014. Zerocash: Decentralized Anonymous Payments from Bitcoin. In 2014 IEEE
Symposium on Security and Privacy. 459–474.

[54] Fred B Schneider. 1990. Implementing fault-tolerant services using the state

machine approach: A tutorial. ACM Computing Surveys (CSUR) 22, 4 (1990),

299–319.

[55] Fred B Schneider. 1990. Implementing fault-tolerant services using the state

machine approach: A tutorial. ACM Computing Surveys (CSUR) 22, 4 (1990),

299–319.

[56] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.

2019. Blurring the Lines between Blockchains and Database Systems: The Case

of Hyperledger Fabric. In Proceedings of the 2019 International Conference on
Management of Data (SIGMOD ’19). Association for Computing Machinery, New

York, NY, USA, 105–122. https://doi.org/10.1145/3299869.3319883

[57] J. Sousa and A. Bessani. 2012. From Byzantine Consensus to BFT State Ma-

chine Replication: A Latency-Optimal Transformation. In 2012 Ninth European
Dependable Computing Conference. 37–48. https://doi.org/10.1109/EDCC.2012.32

[58] J. Sousa, A. Bessani, and M. Vukolic. 2018. A Byzantine Fault-Tolerant Ordering

Service for the Hyperledger Fabric Blockchain Platform. In 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
51–58. https://doi.org/10.1109/DSN.2018.00018

[59] Sam Toueg. 1984. Randomized byzantine agreements. In Proceedings of the third
annual ACM symposium on Principles of distributed computing. 163–178.

[60] Nicolas Van Saberhagen. 2013. CryptoNote v 2.0.

[61] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. Hotstuff: Bft consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Computing.
347–356.

https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/3299869.3319883
https://doi.org/10.1109/EDCC.2012.32
https://doi.org/10.1109/DSN.2018.00018

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain technology
	2.2 Hyperledger Fabric
	2.3 BFT-SMaRt

	3 Architecture
	4 The consensus library and API
	4.1 An interface suited for a blockchain application
	4.2 Reconfiguration

	5 Byzantine fault-tolerant Hyperledger Fabric
	5.1 Block structure and signatures
	5.2 The orderer node
	5.3 Block validation
	5.4 The peer
	5.5 The client

	6 Evaluation
	6.1 Setup
	6.2 Performance: BFT versus Raft
	6.3 Latency of BFT consensus

	7 Related work
	7.1 Byzantine fault tolerance
	7.2 Blockchain and BFT
	7.3 BFT-Smart and Hyperledger Fabric
	7.4 Tendermint and Hyperledger Fabric

	8 Conclusion
	References

